Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
Pharmacol Res ; 204: 107189, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38649124

RESUMO

Spinal cord injury (SCI) is a complex problem in modern medicine. Fibroblast activation and fibroscarring after SCI impede nerve recovery. Non-coding RNA plays an important role in the progression of many diseases, but the study of its role in the progression of spinal fibrosis is still emerging. Here, we investigated the function of circular RNAs, specifically antisense to the cerebellar degeneration-related protein 1 (CDR1as), in spinal fibrosis and characterized its molecular mechanism and pathophysiology. The presence of CDR1as in the spinal cord was verified by sequencing and RNA expression assays. The effects of inhibition of CDR1as on scar formation, inflammation and nerve regeneration after spinal cord injury were investigated in vivo and in vitro. Further, gene expression of miR-7a-5p and protein expression of transforming Growth Factor Beta Receptor II (TGF-ßR2) were measured to evaluate their predicted interactions with CDR1as. The regulatory effects and activation pathways were subsequently verified by miR-7a-5p inhibitor and siCDR1as. These results indicate that CDR1as/miR-7a-5p/TGF-ßR2 interactions may exert scars and nerves functions and suggest potential therapeutic targets for treating spinal fibrotic diseases.

2.
Ann Jt ; 9: 10, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529291

RESUMO

Background and Objective: Connexin 43 (Cx43) is the main gap junction (GJ) protein and hemichannel protein in bone tissue. It is involved in the formation of hemichannels and GJs and establishes channels that can communicate directly to exchange substances and signals, affecting the structure and function of osteocytes. CX43 is very important for the normal development of bone tissue and the establishment and balance of bone reconstruction. However, the molecular mechanisms by which CX43 regulates osteoblast function and homeostasis have been less well studied, and this article provides a review of research in this area. Methods: We searched the PubMed, EMBASE, Cochrane Library, and Web of Science databases for studies published up to June 2023 using the keywords Connexin 43/Cx43 and Osteocytes. Screening of literatures according to inclusion and exclusion guidelines and summarized the results. Key Content and Findings: Osteocytes, osteoblasts, and osteoclasts all express Cx43 and form an overall network through the interaction between GJs. Cx43 is not only involved in the mechanical response of bone tissue but also in the regulation of signal transduction, which could provide new molecular markers and novel targets for the treatment of certain bone diseases. Conclusions: Cx43 is expressed in osteoblasts, osteoclasts, and osteoclasts and plays an important role in regulating the function, signal transduction, and mechanotransduction of osteocytes. This review offers a new contribution to the literature by summarizing the relationship between Cx43, a key protein of bone tissue, and osteoblasts.

3.
mSphere ; 9(4): e0081623, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38470044

RESUMO

Anaerostipes hadrus (A. hadrus) is a dominant species in the human gut microbiota and considered a beneficial bacterium for producing probiotic butyrate. However, recent studies have suggested that A. hadrus may negatively affect the host through synthesizing fatty acid and metabolizing the anticancer drug 5-fluorouracil, indicating that the impact of A. hadrus is complex and unclear. Therefore, comprehensive genomic studies on A. hadrus need to be performed. We integrated 527 high-quality public A. hadrus genomes and five distinct metagenomic cohorts. We analyzed these data using the approaches of comparative genomics, metagenomics, and protein structure prediction. We also performed validations with culture-based in vitro assays. We constructed the first large-scale pan-genome of A. hadrus (n = 527) and identified 5-fluorouracil metabolism genes as ubiquitous in A. hadrus genomes as butyrate-producing genes. Metagenomic analysis revealed the wide and stable distribution of A. hadrus in healthy individuals, patients with inflammatory bowel disease, and patients with colorectal cancer, with healthy individuals carrying more A. hadrus. The predicted high-quality protein structure indicated that A. hadrus might metabolize 5-fluorouracil by producing bacterial dihydropyrimidine dehydrogenase (encoded by the preTA operon). Through in vitro assays, we validated the short-chain fatty acid production and 5-fluorouracil metabolism abilities of A. hadrus. We observed for the first time that A. hadrus can convert 5-fluorouracil to α-fluoro-ß-ureidopropionic acid, which may result from the combined action of the preTA operon and adjacent hydA (encoding bacterial dihydropyrimidinase). Our results offer novel understandings of A. hadrus, exceptionally functional features, and potential applications. IMPORTANCE: This work provides new insights into the evolutionary relationships, functional characteristics, prevalence, and potential applications of Anaerostipes hadrus.

4.
Microscopy (Oxf) ; 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38421047

RESUMO

We developed a simple coordinate transformation method for quickly locating features of interest (FOIs) of samples in transmission electron microscope (TEM). The method is well suited for conducting sample searches in aberration-corrected scanning/transmission electron microscopes (S/TEM), where the survey can be very time-consuming because of the limited field of view imposed by the highly excited objective lens after fine-tuning the aberration correctors. For implementation, a digital image of the sample and the TEM holder was captured using a simple stereo-optical microscope. Naturally presented geometric patterns on the holder were referenced to construct a projective transformation between the electron and optical coordinate systems. The test results demonstrated that the method was accurate and required no electron microscope or specimen holder modifications. Additionally, it eliminated the need to mount the sample onto specific patterned TEM grids or deposit markers, resulting in universal applications for most TEM samples, holders and electron microscopes for fast FOI identification. Furthermore, we implemented the method into a Gatan script for graphical-user-interface-based step-by-step instructions. Through online communication, the script enabled real-time navigation and tracking of the motion of samples in TEM on enlarged optical images with a panoramic view.

5.
Nanotechnology ; 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38306698

RESUMO

Two-dimensional transition metal dichalcogenide (TMDC) thin films have been extensively employed in microelectronics research. Molybdenum disulfide (MoS2), as one of prominent candidates of this class, has been applied in photodetectors, integrated electronic devices, gas sensing, and electrochemical catalysis, owing to its extraordinary optoelectronic, chemical, and mechanical properties. Synthesis of MoS2crystal film is the key to its application. However, the reported technology revealed several drawbacks, containing limited surface area, prolonged high-temperature environment, and unsatisfying crystallinity. In order to enhance the convenience of MoS2applications, there is a pressing need for optimized fabrication technology, which could be quicker, with a large area, with adequate crystallinity and heat-saving. In this work, we presented an ultraviolet laser-assisted synthesis technology, accomplishing rapid growth (with the growth rate of about 40 um s-1) of centimeter-scale MoS2films at room temperature. To achieve this, we self-assembled a displaceable reaction chamber system, coupled with krypton fluoride ultraviolet pulse laser. The laser motion speed and trajectory could be customized in the software, allowing the maskless patterning of crystal films. As application, we exhibited a photodetector with the integration of synthesized MoS2and lead sulfide colloidal quantum dots (PbS CQDs), displaying broadband photodetection from ultraviolet, visible to near-infrared spectrum (365 ~ 1550 nm), with the detectivity of 109~ 1010Jones, and the rising time of 0.2 ~ 0.3 s. This work not only demonstrated a high-process-efficiency synthesis of TMDC materials, but also has opened up new opportunities for ultraviolet laser used in optoelectronics.

6.
Nat Microbiol ; 9(2): 346-358, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38225460

RESUMO

Antibiotic tolerance is the ability of a susceptible population to survive high doses of cidal drugs and has been shown to compromise therapeutic outcomes in bacterial infections. In comparison, whether fungicide tolerance can be induced by host-derived factors during fungal diseases remains largely unknown. Here, through a systematic evaluation of metabolite-drug-fungal interactions in the leading fungal meningitis pathogen, Cryptococcus neoformans, we found that brain glucose induces fungal tolerance to amphotericin B (AmB) in mouse brain tissue and patient cerebrospinal fluid via the fungal glucose repression activator Mig1. Mig1-mediated tolerance limits treatment efficacy for cryptococcal meningitis in mice via inhibiting the synthesis of ergosterol, the target of AmB, and promoting the production of inositolphosphorylceramide, which competes with AmB for ergosterol. Furthermore, AmB combined with an inhibitor of fungal-specific inositolphosphorylceramide synthase, aureobasidin A, shows better efficacy against cryptococcal meningitis in mice than do clinically recommended therapies.


Assuntos
Cryptococcus neoformans , Meningite Criptocócica , Humanos , Animais , Camundongos , Anfotericina B/farmacologia , Anfotericina B/uso terapêutico , Meningite Criptocócica/tratamento farmacológico , Meningite Criptocócica/microbiologia , Antifúngicos/farmacologia , Encéfalo , Ergosterol/uso terapêutico
7.
Nat Microbiol ; 9(2): 434-450, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38233647

RESUMO

A strong correlation between gut microbes and host health has been observed in numerous gut metagenomic cohort studies. However, the underlying mechanisms governing host-microbe interactions in the gut remain largely unknown. Here we report that the gut commensal Christensenella minuta modulates host metabolism by generating a previously undescribed class of secondary bile acids with 3-O-acylation substitution that inhibit the intestinal farnesoid X receptor. Administration of C. minuta alleviated features of metabolic disease in high fat diet-induced obese mice associated with a significant increase in these acylated bile acids, which we refer to as 3-O-acyl-cholic acids. Specific knockout of intestinal farnesoid X receptor in mice counteracted the beneficial effects observed in their wild-type counterparts. Finally, we showed that 3-O-acyl-CAs were prevalent in healthy humans but significantly depleted in patients with type 2 diabetes. Our findings indicate a role for C. minuta and acylated bile acids in metabolic diseases.


Assuntos
Ácidos e Sais Biliares , Diabetes Mellitus Tipo 2 , Humanos , Animais , Camundongos , Clostridiales , Dieta Hiperlipídica
8.
Sleep Med ; 114: 182-188, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38215669

RESUMO

OBJECTIVE: To characterize sleep duration and investigate its association with quality of life among Parkinson's Disease (PD) patients. METHODS: In this multicenter cross-sectional study, 970 PD patients were divided into five groups based on self-reported sleep duration: <5, ≥5 to <6, ≥6 to <7, ≥7 to ≤8, and >8 h. The quality of life was evaluated using the 39-Item Parkinson's Disease Questionnaire (PDQ-39). Multivariable linear regression analysis, subgroup analysis, and mediation analysis were conducted to examine the association between sleep duration and quality of life. RESULTS: In multivariable linear regression model, patients with sleep duration (<5 h) had significantly higher PDQ-39 scores (ß = 8.132, 95 % CI: 3.99 to 12.266), especially in mobility, activities of daily living, emotional well-being, stigma, social support, cognition, communication, and bodily discomfort (p < 0.05). The association between sleep duration (<5 h) and worse quality of life was more pronounced in patients with higher HY stage, longer disease duration, and sleep disorders. Moreover, a significant indirect effect of sleep duration (<5 h) on quality of life was observed, with UPDRS I, UPDRS II, and UPDRS IV scores acting as mediators. CONCLUSIONS: Short sleep duration (<5 h) is associated with worse quality of life among PD patients. This association was stronger among patients with advanced PD and sleep disorders, while non-motor symptoms and motor complications were identified as significant mediators in this association. These findings highlight the significance of adequate sleep duration and suitable interventions for sleep may help improve quality of life.


Assuntos
Doença de Parkinson , Transtornos do Sono-Vigília , Humanos , Doença de Parkinson/complicações , Qualidade de Vida/psicologia , Estudos Transversais , Duração do Sono , Atividades Cotidianas , Índice de Gravidade de Doença , Sono , Inquéritos e Questionários , Transtornos do Sono-Vigília/complicações
9.
J Mater Chem B ; 12(5): 1271-1284, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38186375

RESUMO

Owing to the avascular and aneural nature of cartilage tissue and the complex, multilayered structure of osteochondral units, the repair of osteochondral defects poses significant challenges. Traditional monophasic scaffolds have difficulty meeting the repair requirements of both cartilage and bone tissues, whereas multiphasic scaffolds face the issue of interfacial integration. In this study, a triphasic methylpropenylated gelatin (GELMA) hydrogel scaffold was employed to repair osteochondral defects, in which three layers of hydrogel were covalently bonded through a sequential curing process. The upper layer of the scaffold was covalently bonded with chondroitin sulfate, promoting chondrogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). The middle and lower layers of the hydrogel introduced a gradient content of hydroxyapatite, forming a scaffold with gradient mechanical strength and effectively enhancing its angiogenic and osteogenic induction capabilities. Finally, the triphasic integrated scaffold cartilage and bone repair performance was evaluated using a rabbit knee joint defect model. The results demonstrated that the scaffold facilitated accelerated regeneration of osteochondral defects, thus providing a novel strategy for the treatment of osteochondral defects.


Assuntos
Engenharia Tecidual , Tecidos Suporte , Animais , Coelhos , Tecidos Suporte/química , Engenharia Tecidual/métodos , Cartilagem , Osso e Ossos , Hidrogéis/química
10.
Chem Commun (Camb) ; 60(3): 316-319, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38063025

RESUMO

This study presents an injectable cell-laden hydrogel system based on silk acid, a carboxylated derivative of natural silk fibroin, which exhibits promising applications in biomedicine. The hydrogel is produced under physiological conditions (37 °C and pH 7.4) via physical crosslinking. Notably, the hydrogel demonstrates remarkable cytocompatibility, enabling efficient cell encapsulation, and exhibits good injectability. These promising results strongly indicate the potential of silk acid hydrogel for transformative applications, including 3D cell culture, targeted cell delivery, and tissue engineering.


Assuntos
Fibroínas , Hidrogéis , Seda , Engenharia Tecidual/métodos
11.
Int J Nanomedicine ; 18: 5815-5830, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37869064

RESUMO

Purpose: Large bone defects caused by congenital defects, infections, degenerative diseases, trauma, and tumors often require personalized shapes and rapid reconstruction of the bone tissue. Three-dimensional (3D)-printed bone tissue engineering scaffolds exhibit promising application potential. Fused deposition modeling (FDM) technology can flexibly select and prepare printed biomaterials and design and fabricate bionic microstructures to promote personalized large bone defect repair. FDM-3D printing technology was used to prepare polylactic acid (PLA)/nano ß-tricalcium phosphate (TCP) composite bone tissue engineering scaffolds in this study. The ability of the bone-tissue-engineered scaffold to repair bone defects was evaluated in vivo and in vitro. Methods: PLA/nano-TCP composite bone tissue engineering scaffolds were prepared using FDM-3D printing technology. The characterization data of the scaffolds were obtained using relevant detection methods. The physical and chemical properties, biocompatibility, and in vitro osteogenic capacity of the scaffolds were investigated, and their bone repair capacity was evaluated using an in vivo animal model of rabbit femur bone defects. Results: The FDM-printed PLA/nano ß-TCP composite scaffolds exhibited good personalized porosity and shape, and their osteogenic ability, biocompatibility, and bone repair ability in vivo were superior to those of pure PLA. The merits of biodegradable PLA and bioactive nano ß-TCP ceramics were combined to improve the overall biological performance of the composites. Conclusion: The FDM-printed PLA/nano-ß-TCP composite scaffold with a ratio of 7:3 exhibited good personalized porosity and shape, as well as good osteogenic ability, biocompatibility, and bone repair ability. This study provides a promising strategy for treating large bone defects.


Assuntos
Engenharia Tecidual , Tecidos Suporte , Animais , Coelhos , Engenharia Tecidual/métodos , Tecidos Suporte/química , Osteogênese , Poliésteres/química , Osso e Ossos , Impressão Tridimensional
12.
Hortic Res ; 10(9): uhad154, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37719276

RESUMO

Tea anthracnose is a prevalent disease in China that can lead to reduced tea production and lower quality, yet there is currently a lack of effective means for controlling this disease. In this study, we identified 46 phenolamides (including 27 isomers) in different tissues and organs of tea plants based on a developed workflow, and the secondary mass spectra of all these compounds have been documented. It was revealed that tea plants predominantly accumulate protonated aliphatic phenolamides, rather than aromatic phenolamides. The profile of phenolamides indicate that their buildup in tea plants is specific to certain tissues and acyl-acceptors, and this distribution is associated with the extent of phenolamide acyl-modification. Additionally, it was observed that N-Feruloylputrescine (Fer-Put, a type of phenolamides) was responsive to the stimulated accumulation of the tea anthracnose pathogen. The findings of anti-anthracnose experiments in vitro and on tea leaf demonstrated that Fer-Put was capable of significantly inhibiting the growth of anthracnose pathogen colony, effectively prevented tea leaf disease. Furthermore, it was observed that Fer-Put treatment can enhance the antioxidant enzyme activity of tea leaves. TEA002780.1 and TEA013165.1 gene may be responsible for the biosynthesis of Fer-Put in the disease resistance process in tea plants. Through these studies, the types and distribution of phenolamides in tea plants have been elucidated, and Fer-Put's ability to resist anthracnose has been established, providing new insights into the resistance of tea anthracnose.

13.
Adv Healthc Mater ; 12(28): e2301439, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37647626

RESUMO

Silk fibroin derived from the domesticated silkworm Bombyx mori is a protein-based biopolymer with low immunogenicity, intrinsic biodegradability, and tunable mechanical properties, showing great potential in biomedical applications. Using chemical modification to alter the primary structure of silk fibroin enables the expanded generation of new silk-based biomaterials. Inspired by the molecular structure of hyaluronic acid, which is enriched in carboxyl groups, an efficient method with scaling-up potential to achieve controlled carboxylation of silk fibroin to prepare silk acid (SA) is reported, and the biological properties of SA are further studied. The SA materials show tunable hydrophilicity and enzymatic degradation properties at different carboxylation degrees (CDs). Subcutaneous implantation in mice for up to 1 month reveals that the SA materials with a high CD present enhanced degradation while causing a mild foreign-body response, including a low inflammatory response and reduced fibrotic encapsulation. Immunofluorescence analysis further indicates that the SA materials show pro-angiogenesis properties and promote M2-type macrophage polarization to facilitate tissue regeneration. This implies great promise for SA materials as a new implantable biomaterial for tissue regeneration.


Assuntos
Bombyx , Fibroínas , Animais , Camundongos , Seda/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Fibroínas/farmacologia , Fibroínas/química , Bombyx/química , Próteses e Implantes
14.
J Environ Manage ; 344: 118516, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37413733

RESUMO

Centralized vs. decentralized sewage treatment is one of the key issues in the planning of rural sewage treatment (RST) in China due to the country's diverse regional characteristics. There are very limited comprehensive evaluation models for selecting regionally suitable schemes and facilities, particularly for national or provisional scale planning. As a scenario-based multi-attribute decision-making (MADM) issue, this paper develops a novel RST suitability evaluation model by integrating the multi-attribute analytic hierarchy process (AHP) with the technique for order preference by similarity to an ideal solution (TOPSIS). The suitability evaluation model sets up 3 small-centralized and 4 decentralized RST facilities as candidates and includes 12 evaluation indicators that cover economic cost, life cycle environmental impacts, technical features and operations management. Eight generic scenarios are classified for Chinese rural areas based on differences in three major characteristic factors, i.e., population density (PD), the economic development level (EDL), and topographic slope (TS). The universal evaluation results show that a centralized sewage treatment scheme is more suitable for areas with a high PD/high EDL/low TS, while a decentralized scheme is more suitable for areas with a low PD/low EDL/high TS. Sensitivity analysis shows that in regions with a high PD/low EDL, the indicator weight of the construction investment cost in the model has a great influence on the facility suitability ranking. However, in regions with a high PD/high EDL, the ranking is the most sensitive to the indicator weights of the global warming potential and sewage treatment effect. Furthermore, as a spatial decision issue, an RST suitability map of Hunan Province in China is produced at the county level of resolution, and the map is generally consistent with our field knowledge of several counties in Hunan Province. The presented evaluation framework can be integrated into environmental decision support systems in the future to help local and central governments, water utilities, design institutes and other stakeholders scientifically plan RST projects.


Assuntos
Meio Ambiente , Esgotos , Modelos Teóricos , China
15.
Spine (Phila Pa 1976) ; 48(17): E288-E301, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37040465

RESUMO

STUDY DESIGN: Retrospective epidemiological study. OBJECTIVE: To describe differences based on biological sex in the epidemiology and treatment of the economic burden of traumatic spinal cord injury (TSCI) in China (2013-2018). SUMMARY OF BACKGROUND DATA: Although there have been many regional single-center studies on TSCI in China, there are few reports involving multicenter data, especially those that report on discrepancies related to biological sex. MATERIALS AND METHODS: This study is a nationally representative hospital-based retrospective study. The treatment data of TSCI patients in 30 hospitals in 11 provinces/cities from January 2013 to December 2018 were analyzed. Sociodemographic characteristics, accident and related injury characteristics, treatment methods, and hospital costs were obtained. Regression models were used to evaluate differences in the outcomes of interest based on biological sex and other factors. RESULTS: There were 13,465 individuals with TSCI, with a mean age of 50.0 years, and females (52.2) older than males (49.3). Overall, the average ratio of males to females was 3.1:1, ranging from 3.0:1 in 2013 to 2.8:1 in 2018. The overall proportion of patients with TSCI increased from 2013 to 2018 [annual percentage change (APC)=6.8%, 95% CI, 3.3-10.4] ( P < 0.05). The percent increase in females (APC=8.2%, 95% CI, 5.6-10.8) was greater than that of males (APC=6.3%, 95% CI, 2.1-10.6). Overall, high-level falls mainly affected males (30.8%), and low-level falls mainly occurred in females (36.6%). Females demonstrated a higher frequency of thoracolumbar trauma and less severe neurological impairment. CONCLUSIONS: This study suggests that although the main population of TSCI is male, the average ratio of males to females is decreasing. The frequency of TSCI may be increasing faster in females than in males. Therefore, it is necessary to develop sex-specific public prevention measures. In addition, more medical resources should be devoted to improving the ability of hospitals to perform early surgery.


Assuntos
Estresse Financeiro , Traumatismos da Medula Espinal , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Traumatismos da Medula Espinal/epidemiologia , Traumatismos da Medula Espinal/terapia , Hospitais , China/epidemiologia , Incidência
16.
Redox Biol ; 62: 102690, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37018970

RESUMO

The brain is particularly susceptible to oxidative damage which is a key feature of several neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease. The shuttling of glutathione (GSH) precursors from astrocytes to neurons has been shown to be instrumental for the neuroprotective activity. Here, we revealed that short chain fatty acids (SCFA), which have been related to AD and PD, could promote glutamate-glutamine shuttle to potentially resist oxidative damage in neurons at cellular level. Furthermore, we performed nine-month-long dietary SCFA supplementations in APPswe/PS1dE9 (APP/PS1) mice, and showed that it reshaped the homeostasis of microbiota and alleviated the cognitive impairment by reducing Aß deposition and tau hyperphosphorylation. Single-cell RNA sequencing analysis of the hippocampus revealed SCFA can enhance astrocyte-neuron communication including glutamate-glutamine shuttle, mainly by acting on astrocyte in vivo. Collectively, our findings indicate that long-term dietary SCFA supplementations at early aging stage can regulate the neuroenergetics to alleviate AD, providing a promising direction for the development of new AD drug.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/genética , Glutamina , Astrócitos , Camundongos Transgênicos , Neurônios/fisiologia , Glutamatos , Modelos Animais de Doenças , Peptídeos beta-Amiloides
17.
Appl Microbiol Biotechnol ; 107(7-8): 2403-2412, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36929192

RESUMO

Polyketides are a class of natural products with astonishing structural diversities, fascinating biological activities, and a versatile of applications. In polyketides biosynthesis, acyltransferases (ATs) are the 'gatekeeping' enzymes selecting the specific CoA-activated acyl groups as building blocks and transferring them onto the phosphopantetheine arm of acyl carrier proteins (ACPs) to enable the following condensation reactions to assemble the polyketide chain. Herein, the Art2 protein from aurantinins, a group of the antibacterial polyketides, is characterized in vitro as an AT that can load a CoA-activated succinyl unit onto the first ACP domain of Art17 (ACPArt17-1). In addition, another two proteins, GbnB and EtnB, involved in the biosynthesis of gladiolin and etnangien respectively, were traced by literature mining, homologous searching, and product structure analysis and then identified as functional succinyl-CoA ATs by the ACPArt17-1 assays. Taken together, by the assay method employing ACPArt17-1 as an acyl acceptor, we identified three ATs that can introduce a succinyl unit into the polyketide assembly line, which enriches the toolbox of polyketide biosynthetic enzymes and sets a stage for incorporating a succinyl unit into polyketide backbones in synthetic biological manners. KEY POINTS: • Three acyltransferases that are able to load ACP with a succinyl unit were characterized in vitro. • ACPArt17-1 can be used as an acceptor to assay succinyl-CoA AT from different polyketides. • The succinyl unit can be incorporated into polyketides assembly process.


Assuntos
Aciltransferases , Policetídeos , Aciltransferases/metabolismo , Policetídeos/metabolismo , Acil Coenzima A/metabolismo , Antibacterianos , Policetídeo Sintases/metabolismo
18.
Cell Host Microbe ; 31(3): 418-432.e8, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36893736

RESUMO

The intestinal microbiota plays an important role in colorectal cancer (CRC) progression. However, the effect of tissue-resident commensal bacteria on CRC immune surveillance remains poorly understood. Here, we analyzed the intratissue bacteria from CRC patient colon tissues. We found that the commensal bacteria belonging to the Lachnospiraceae family, including Ruminococcus gnavus (Rg), Blautia producta (Bp), and Dorea formicigenerans (Df), were enriched in normal tissues, while Fusobacterium nucleatum (Fn) and Peptostreptococcus anaerobius (Pa) were abundant in tumor tissues. Tissue-resident Rg and Bp reduced colon tumor growth and promoted the activation of CD8+ T cells in immunocompetent mice. Mechanistically, intratissue Rg and Bp degraded lyso-glycerophospholipids that inhibited CD8+ T cell activity and maintained the immune surveillance function of CD8+ T cells. Lyso-glycerophospholipids alone promoted tumor growth that was abrogated with Rg and Bp injection. Collectively, intratissue Lachnospiraceae family bacteria facilitate the immune surveillance function of CD8+ T cells and control colorectal cancer progression.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Animais , Camundongos , Neoplasias Colorretais/microbiologia , Linfócitos T CD8-Positivos , Carcinogênese , Neoplasias do Colo/microbiologia , Fusobacterium nucleatum
20.
Chin J Nat Med ; 20(11): 873-880, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36427921

RESUMO

Natural cyclohexapeptide AFN A1 fromStreptomyces alboflavus 313 has moderate antibacterial and antitumor activities. An artificial designed AFN A1 homodimer, di-AFN A1, is an antibiotic exhibiting 10 to 150 fold higher biological activities, compared with the monomer. Unfortunately, the yield of di-AFN A1 is very low (0.09 ± 0.03 mg·L-1) in the engineered strain Streptomyces alboflavus 313_hmtS (S. albo/313_hmtS), which is not friendly to be genetically engineered for titer improvement of di-AFN A1 production. In this study, we constructed a biosynthetic gene cluster for di-AFN A1 and increased its production through heterologous expression. During the collection of di-AFN A1 biosynthetic genes, the afn genes were located at three sites of S. alboflavus 313 genome. The di-AFN A1 biosynthetic gene cluster (BGC) was first assembled on one plasmid and introduced into the model strain Streptomyces lividans TK24, which produced di-AFN A1 at a titer of 0.43 ± 0.01 mg·L-1. To further increase the yield of di-AFN A1, the di-AFN A1 BGC was multiplied and split to mimic the natural afn biosynthetic genes, and the production of di-AFN A1 increased to 0.62 ± 0.11 mg·L-1 in S. lividans TK24 by the later strategy. Finally, different Streptomyces hosts were tested and the titer of di-AFN A1 increased to 0.81 ± 0.17 mg·L-1, about 8.0-fold higher than that in S. albo/313_hmtS. Successful heterologous expression of di-AFN A1 with a remarkable increased titer will greatly facilitate the following synthetic biological study and drug development of this dimeric cyclohexapeptide.


Assuntos
Streptomyces , Clonagem Molecular , Streptomyces/genética , Streptomyces/metabolismo , Família Multigênica , Antibacterianos/metabolismo , Plasmídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...